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The study of the behavior of computational solutions of Burgers’ equation at large mesh 
Reynolds numbers ReAx is extended to a one-dimensional steady-state model gasdynamic 
system with downstream extrapolation conditions. The oscillations generally present in 
computed results at large ReAx can be minimized by choosing a particular formally second- 
order accurate, conservative discretization of the nonlinear terms (pu), and (pu% in the 
continuity and momentum equations. This minimally oscillatory solution has small point- 
wise error even at large ReAx. It is seen that smoothness by itself may not guarantee com- 
putational accuracy, and that overly refined spatial meshes may lead to large errors. Results 
from a realistic two-dimensional computation showing some qualitative agreement with 
the present conclusions are given. 

1. INTRODUCTION 

This paper extends the analysis of Ref. [I] for Burgers’ equation to a one-dimen- 
sional steady-state model which is more representative of the gasdynamics equations 
system. The results of [l] show that for the Burgers finite difference model with fixed 
boundary values, the oscillations usually observed in computed results at large 
values of the mesh Reynolds number ReAx [3,4,6] can be minimized by choosing an 
appropriate second-order accurate discretization of the nonlinear term UU, . This 
minimally oscillatory solution has very small pointwise error even at large ReAx. 
These results for the fixed boundary value case were extended in [2] to cases with a 
downstream extrapolation condition. Tn [2] it was shown additionally how incorrect 
Hugoniot jumps and large pointwise error can occur if the mesh is overly refined in 
attempting to obtain “smooth” solutions. This paper generalizes the above results to 
a system of equations which includes the mass continuity relation and which contains 
nonlinear terms more complicated than UU, . Results showing the occurrence of a 
minimization of oscillations in a two-dimensional computation with the full Navier- 
Stokes equations are given. 

It is stressed that the present model results are essentially nonlinear and deal with 
the system of difference equations in the practical case of large ReAx; the equations 
are not linearized and the limit ReAx + 0 is not taken. It is also emphasized that this 
study deals only with a class of difference algorithms that are strictly conservative or 
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“summable” in difference form, and is concerned only with solutions in the steady- 
state (as the large time limit). In this context, time dependence is viewed only as an 
expedient to proceed from some initial guess to a solution of the steady-state equations. 

2. MODEL PROBLEM 

A. DifSerential Model 

The one-dimensional steady-state model gasdynamic system considered here is 

Continuity: (P4, = 0 

Momentum: (PU2h! = -P3c + & %z 

(14 

(lb) 

Energy (and state): p = Apr (14 

Here p is the density, u the velocity, andp the pressure. All variables have already been 
suitably nondimensionalized by upstream reference values (indicated by subscript 
“ref”). The last equation (Ic) represents an “integrated” energy equation where 
fl = (~/Pu”)~~P is a thermodynamic constant specifying the reference or initial state, and 
r is the polytropic index representing the thermodynamic processes. Except for this 
simplified treatment of the energy equation, Eqs. (1) strongly resemble the full system 
of gasdynamic equations. The fluid flow represented by (Ic) is isothermal when r = 1, 
whereas the flow is isentropic or reversible if r equals the ratio of specific heats cD/c, . 
Other values of r allow the model to take approximate account of nonisentropic 
effects. When the flow is isentropic and the fluid is a perfect gas, A can be identified as 
(l/rM2), where M is the flow Mach number. The parameter RE = (PU)~~P L/p is a 
Reynolds number based upon the (dimensional) reference density and velocity, a 
length L equal to half the computational field size, and the coefficient of fluid viscosity 
t.~. The change in notation from “Re” in [I] to “RE” here emphasizes that the Reynolds 
number is now based upon the upstream reference velocity, rather than on the velocity 
jump as for the Burgers’ model. The nondimensional computational field is taken to be 
-1 < x < 1, and the upstream boundary conditions are taken to be the given 
nondimensional values 

u(x = -1) = 1, p(x = -1) = 1 (2) 

The downstream conditions at x = 1 remain to be specified. 
Within the differential framework, the system (1) can be readily reduced to the 

single model differential equation 

If r = 1, the exact solution of (3) is given implicitly as 

RE(x - x0) = In [(~~~~~]l’il-n’ (4) 
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FIG. 1. Differential solution of model problem for Y = 1. 

Assuming that the Reynolds number RE is large, Eq. (4) represents a steep, non- 
symmetric transition from u = 1 to u = (1 (Figure 1). Except for the asymmetry, 
solution (4) behaves very much the same as does the steady solution of Burgers’ 
equation [ 11. 

To obtain the differential “Hugoniot” relation, (3) is integrated once to give 

U + $ = constant = 1 + (1, (5) 

where the term (IIRE) u,, is neglected on the assumption that it is small sufficiently 
far upstream and downstream of the discontinuity. The constant is evaluated using (2). 
For the case r = 1, one obtains 

from which it follows that the downstream value is either 

(U)& = 1 (74 
or 

(u),,, = Lfl (7b) 

Equation (7a) represents the uniform flow solution (which is of no interest here), and 
(7b) is the specific allowable jump discontinuity. When Y > 1, the Hugoniot (5) will 
lead to 

(u>,=, = 1 (74 
or 

(u),,, = A’ > n (74 

with il’ being the positive real solution of (5) giving the downstream value after the 
jump. 

B. Difference Model 

To obtain the model difference equation, the x-coordinate is discretized as x = 
jdx(j = 0, fl, &2,..., -+J) so that Jdx = 1, and the mesh functions are taken as 
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lJj = U(j&) and pi = p(j&). Employing a second-order accurate conservative 
difference algorithm analogous to the one used in [I], the difference equations re- 
presenting system (1) are 

i2 :,,r (Pa+1 - (P WC- 
1 2Ax 1 

+(& I[ PdU,+, - uj-1) + (J,(Pi+1 - &I) 
2Ax 1 = () 

(PWi+1 - (PWGl --- 
2Ax 1 

(8) 

(9) 

Equations (8) and (9) hold forj = --J + I, --J + 2,..., J - 2, J - 1. The first two 
terms in each equation represent weighted averages of centered difference approxima- 
tions of the (differentially equivalent) divergence and convective forms of the non- 
linear terms. (The physical and mathematical implications of conservative differencing 
are explained in detail in [5], where such differencing of the “convective form”, e.g., 
puo + up, , is illustrated.) The parameters yr and yz are independent and arbitrary, 
and difference system (8, 9) is formally second-order accurate and conservative (in the 
sense of summability without residue) for any choice of these parameters. The choice 
yi = 0 represents pure divergence form differencing, whereas yi = cc represents pure 
convective form differencing. 

The boundary conditions for the present model are 

U-J = I) P-J = I W,b) 

UJ == I/J-l , PJ = PJ-1 (Wd) 

where (lOc,d) are simple extrapolation conditions employed at the downstream 
boundary j = J. The motivation for (and philosophy of) using such conditions is 
discussed briefly in section 2C and more thoroughly in [2]. 

Unlike the differential system, difference system (8,9) can only be reduced to a 
single difference equation under special circumstances. This reduction occurs when 
y1 = 0. Equation (8) then gives 

which together with (10) yields 

(Pi = constant = 1. 
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Difference system (8, 9) then becomes 

w,+1 - U&l) -t fl(k - &-) = j&j++1 - 2uj + uj-,) (13) 

which is the appropriate discretized version of the simplified model differential 
equation (3). It is emphasized that (13) is differencely equivalent to system (8,9) only 
when yr = 0. The parameter REAx = [(p~)~~r LAX/~] is a mesh Reynolds number 
which is based on the upstream reference velocity uref. It will later be shown that a 
mesh Reynolds number ReAx based on the physical jump magnitude (as for the 
Burgers’ model) is a more representative computational parameter. In practical 
computation, ReAx is O(10) or larger. 

The difference Hugoniot relation is obtained by summing Eqs. (8) and (9) from 
j = --J + 1 to j = J - 1, giving 

and 

2b w./ + WLI + YJPJ-1UJ + PJUJ-,I 
= mp%l + W-J,,1 + Y1b-J+IU-J + P--J&+11 (14) 

+ 42 + Yz)[ff + PI;-11 - 2zE+A;’ [UJ - UJ-,] 

= 2[(pu2)-J + (fu2)-J+11 + y2[(f-J+1 + f-J) u-J+lu-Jl 

+ 42 + y2)[f:J + f:J+I] - ‘$,‘,f [ u-J+.1 - U-J] (15) 

The conservative property of the difference algorithm allows such a summation to be 
conveniently carried out (the sum is “telescopic”). In the event that the computed 
upstream and downstream solution is smooth so that 

P-J = p-J+1 = U-J = U-J,, = 1 

fJ = ff-1 9 uJ = uJ-, (16) 

the summed difference relations (14, 15) reduce to 

for all choices of y1 and y2 , so that the difference Hugoniot relation (17) is identical to 
the differential Hugoniot (5). Hugoniot relation (17) is, of course, also valid for the 
simplified difference equation (13) obtained when y1 = 0. Equations (14) and (15) 
indicate that the correctness of the Hugoniot jump computationally obtained using 
boundary conditions (10) depends on the smoothness of the computed inlet flow 
(i.e., on I KJ+t - CL, I and I p-.,+1 - p-J I). 
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C. Comments on the Models 

The parameter y1 plays an important role in the present difference model. The 
choice yi = 0 will enforce strict pointwise equality of mass flow rates, whereas for 
y1 # 0 this pointwise equality is not guaranteed since the conservative differencing 
serves only to prevent accumulation of the local errors, not to eliminate the local error 
itself. It is noted that the parameter yZ disappears when y1 = 0, since the convective 
term becomes linear. Now the disappearance of the differencing parameter yZ may 
seem unfortunate, since it is precisely the presence of such an arbitrary parameter in 
the Burgers’ model investigated in [I] which allows one to vary the optimal Re Ax of 
computation. However, the case yr = 0 is interesting for other reasons and, as shown 
later in Section 5, yr and yZ can indeed be chosen to obtain such an optimal Re Ax for 
coarse mesh computation with the present model. 

It is noted that strict divergence form discretization of the mass conservation 
equation in related two-dimensional models will not result in a similar effective 
linearization of the nonlinear terms in the momentum equations, so that discretization 
parameters in those equations will not become ineffective. Moreover, the differencing 
of the nonlinear term (puz), in the present one-dimensional model can be further 
generalized by including, in addition to (pzP>, = (pu) u, -t Us , the other differen- 
tially equivalent form p(u”)% + u2p, . It is also possible (though awkward) to 
generalized even further by noting that for any function f(x),fZ = [(f1/2)2]ZJ = 
2f li2f ‘,” so that the corresponding conservative difference form is 

Such differencing could be used for the term (p’jZ in the present model; however, 
these generalizations are not considered here. 

The mesh Reynolds number RE Ax is a composite parameter which reflects the 
physical characteristics of the flow ((pu,Ler , p), th e computational field size L, and 
the mesh size Ax. This parameter measures mesh fineness relative to the steepness of 
the gradient one wishes to compute. Small values of RE Ax indicate a fine mesh, while 
large values mean that the mesh is coarse. Note that RE Ax, and not Ax alone, stands 
as a parameter in the difference equations. Despite this, the value J = (l/Ax) still plays 
a role because difference equations (8,9) must be satisfied at precisely 25 - I mesh 
points. However, the computational results as indicated in Ref. [I] become essentially 
a function of RE Ax alone for J sufficiently large, and this sufficient value of J (-10) 
is ordinarily achieved in practical coarse mesh computations (Ref. [2]). 

Some comments on the downstream extrapolation condition (10~ d) are in order. 
Analogous extrapolation conditions are often used in practical computations, 
ordinarily when there is reason to believe that some derivative should be “small” 
when the boundary of the computational field is “sufficiently far away” from the 
flow features of interest. Using this kind of extrapolation condition involves two 
approximations; namely, replacing the small derivative with a finite difference set 
equal to zero, and imposing the approximate boundary specification at a finite (rather 
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than infinite) distance “downstream.” Nevertheless, this procedure is assumed to 
yield physically reasonable approximate solutions, even if setting the derivative equal 
to zero at some finite field location in the differential formulation is questionable [2]. 
The difficulty inherent in such a boundary specification cannot be conveniently avoided 
by specifying the downstream function value, since this is often an unknown to be 
determined by the computation. Nor is the problem alleviated by matching the 
downstream “derivative” to a known asymptotic solution, since the computed values 
downstream are dominated by the effects of computational oscillations at large Re Ax. 
Moreover, with downstream extrapolation, the differential formulation could be 
poorly-posed. In this case, convergence of the difference solution to the solution of the 
analogous differential problem should not be assumed to occur in the limit of 
vanishingly small mesh size. However, the difference formulation may yield physically 
reasonable approximations for small but finite (not vanishingly small) mesh sizes; it is 
demonstrated that this can happen. 

3. INFLUENCE OF THERMODYNAMIC PARAMETERS fl AND r 

In order to investigate the influence of the thermodynamic parameters A and r on 
the difference solutions, it is assumed that y1 = 0 so that the greatly simplified dif- 
ference system 

C”j+l - uj-l) + A (+ - +) = & (Uj+l - 2uj + U&J 
3+1 3-I 

j=-J+l.-J+2 ,..., J-2,J-1 (19a) 
U-J = 1 (19b) 
u.J = UJ-, (19c) 

can be studied in place of (8,9). The effect of the parameters y1 and yz , not present 
in this simplified model, is discussed in Section 5. 

Two families of solutions of system (19) for special values of the mesh Reynolds 
number RE AX are now displayed. They are: 

uj = 1 j = -J, -J + I,..., k - 1 

UJi 1 =-- 
2 j=k 

= u.l j = k + 1, k + 2 ,..., J - 1, J 

for RE Ax = RE* Ax = u,- 1 

(c”J- ])j2) - A [I - (cuJ; 1j,2jr ] 

k = -J + I, -J + 2,..., J - 2 (20) 
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and 

Uj = 1 j = -J, -J + l,..., k 

= UJ j=k+ l,k+2 ,..., J- 1,J 

for REAx=Rl?Ax=cc 

k = -J, -J + I,..., J - 2 (21) 

Here UJ is the correct Hugoniot value which is the proper real solution of Hugoniot 
relation (17) for given values of r and A. Solutions (20) and (21) are remarkable in that 
they accomplish an abrupt jump from the upstream value U = 1 to the downstream 
value U = U, (in 2 Ax and 1 Ax respectively) without generating any computational 
oscillations. In this simple model problem, the computed abrupt jump can occur 
almost anywhere in the computational field, according to the choice of k. Such ar- 
bitrariness is essentially due to the translational invariance of the physical problem [2]. 
Solutions (20) and (21) are shown in Figure 2 for the case k = J - 2. It is noted that 

RE*Ax<REAx<R%Ax 

CORRECT"HUGONIOT" 

REAx<R"Ax 

FIG. 2. Difference solutions, r = 1. 

this abrupt jump solution would also be obtained if the downstream boundary 
condition at x = 1 was the specification of the correct downstream value; thus the 
existence of an abrupt jump solution is not dependent upon the precise boundary 
specification. 

The difference Hugoniot relation (17) provides a real solution (in addition to the 
uniform flow value U, = 1) for all positive values of r and A in the physical range. 
Even though not explicitly specified by the extrapolation boundary condition (19c), 
this computed value is the same as that given by the Hugoniot relation (5) of the 
differential problem. It thus appears that the detailed thermodynamic processes may 
not significantly affect the difference behavior provided that the correct values of the 
parameters r and A are adopted. Since the analysis of difference system (19) becomes 
greatly simplified for r = 1, it is desirable to approximate the difference behavior for 
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r i: 1 by using the r = 1 results with some appropriate change in A. This is done by 
rewriting the pressure gradient term in Eq. (19a) as 

so that some estimate of { } can be recognized as the equivalent ii when r is taken to 
be unity. This d will vary only slightly since r is only a little larger than unity. 

4. TYPICAL DIFFERENCE BEHAVIOR 

The behavior of difference solutions of system (19) is now demonstrated. These 
solutions are approximately representative of those for r # 1 if A is altered to iI in the 
manner previously described. With r = 1, relation (17) and (20) governing U, and 
RE* Ax become 

and 
UJ = A (23) 

RE*An=2(#) (24) 

Thus for a given value of the thermodynamic parameter A(0 < A < l), the magnitude 
of the Hugoniot jump of U is 1 - A. 

For other values of RE Ax, the construction of the difference solutions follows that 
of 121. The difference equation (19a) is first considered atj = J - 1, then J - 2, etc., 
and at each step j the appropriate root Ujpl of the quadratic is chosen. To begin, 
Eq. (19a) atj = J - 1 together with the extrapolation condition (19~) gives 

(U&l - U&2) (1 + & - A UJ-1 u.J-2 ) = 0 (25) 

Thus either 

Or 

UJ-, = UJ-, (264 

UJ-,UJ-, = - 
A 

1 -t 2/RE Ax (26b) 

Root (26b) is chosen, which fixes the “location” of the jump at j = J - 2 and 
eliminates the translational arbitrariness of the present model. It is assumed that the 
correct Hugoniot value U, x/1 is computed (as can be verified a posteriori [2]), so 
that (26b) gives 

A 
uJ-2 = (1 

1 
1 +- 2/RE Ax 

The general behavior of the difference solutions can then be determined from Eq. (27), 

581/32/I-4 
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and from relation (19a) at j = J - 2, J - 3, etc. The results, which are depicted in 
Figure 2, have been verified by direct digital computation with time-dependent 
equations which reduce to (19) in the steady-state. 

It is observed that if RE dx equals the special value REdx = 2/l/(1 - /I), then 
U,-, = d. As shown in [2], this solution is that special smooth solution separating 
the oscillatory solutions at RE dx > Ri? dx with correct computed jump values from 
those smooth solutions at RE dx < Rl?dx with Hugoniot jump values that are too 
large (see Fig. 2). This incorrect Hugoniot jump for RE dx < Ri? dx occurs because 
the computed solution is such that I U-, - U-,+, I is not small, so that the summed 
relations (14, 15) will not yield the same downstream values of U, as does the differen- 
tial Hugoniot, Eq. (5). The difference problem (19) becomes ill-posed (for the physi- 
cally interesting solution) in the limit RE Ax -+ 0, possibly because there does not 
exist a non-constant dz*rential solution satisfying U,(X = 1) = 0. Note that, for the 
sake of clarity, Fig. 2 does not show that as RE Ax is decreased from RE* Ax to 
R.i? Ax, the behavior of the difference solution changes “continuously” to the smooth 
Ri? Ax solution by having more and more mesh points (first LJ-, , then U,-, , etc.) 
within a smooth jump profile before the first overshoot of U = 1 occurs. 

The present method of constructing the difference solutions by starting at the 
downstream location j = J is particularly appropriate when the downstream extra- 
polation condition (IOc, d) is imposed. The exact satisfaction of this extrapolation 
condition is the feature which prevents oscillations from occuring downstream of the 
jump transition in this simple model problem. Should the extrapolation condition be 
only approximately satisfied. other construction methods are attractive and they can 
yield solutions with oscillations both upstream and downstream of the jump. 

5. USE OF DISCRETIZATION PARAMETERS y1 , yz TO OBTAIN LARGE RE*Ax 

If y1 # 0, pointwise (local) mass conservation is secured only to the order of the 
(non-accumulating) local truncation error O(Ax2), and there is little apparent simplifi- 
cation of difference system (8, 9). Despite the complexities, for particular choices of y1 
and 3/S there exists “exact” solutions giving an abrupt jump across 2 dx without 
oscillations at fairly large values of RE Ax. Such solutions provide guidance for 
achieving “optimal” coarse mesh computation. No exact solutions giving an abrupt 
jump in 1 Ax exist for y1 # 0. 

The exact solutions which do exist are of the form 

Uj=l, pj=l 

U k? pk 

Uj = UJ) 

j = -J, -J + l,..., k - 1 

,j = k 

j = k + 1, k + 2 ,..., J - I, J 

(28) 

where the values pk, uk at the “midpoint” of the jump (Fig. 3) are given in the 
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Appendix, as is the analytic method for obtaining such abrupt jump solutions. The 
values pJ and U, are the correct downstream Hugoniot values. Difference solution (28) 
is obtained only for the combinations of values y1 = rt, yz = yz , and Re dx = 
Re* Ax shown in Figures 4, 5, and 6. There is one degree of freedom which is here 
used to select r:‘. Then Figure 4 displays the appropriate choice of yt as a function of 
7:’ for two reasonable choices of r and Ll. Other physically reasonable choices 0 < 
(1 < 1 and 1 < r < I .4 yield results which are very nearly the same, so that rf is 
essentially dependent only on rf as given by Figure 4. 

OU 

'P 

FIG. 3. Abrupt jump (“exact”) difference solutions for REAx = RE*Ax. 

FIG. 4. Choice of y2 as a function of y, for “exact” solution (essentially the same for other 
0 c A < I, 1 < r S 1.4). 

Figure 5 shows Re* Ax = ((1 - 11,)/2) RE* Ax as a function of yf for r = 1; Fig. 6 
does the same for r = 1.4. The change from the mesh Reynolds number RE Ax 
based on the upstream reference velocity to Re Ax based on half of the computed 
velocity jump causes the results for all choices of II to nearly coincide, and thus 
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Re’Ax 

FIG. 5. Re*An = ((1 - UJ)/2) RE*Ax as a function of y,*, Y = 1 (essentially the same for all 
O<A<l). 

FIG. 6. Re*Ax = ((I - U,)/Z) RE*Ax as a function of y:, r = 1.4 (essentially the same for all 
0 < n -:: I). 

suggests that the mesh Reynolds number defined in this way is the most representative 
computational parameter for such problems. It is apparent from Figures 5 and 6 that 
there is a critical value (y&it at which Re* dx becomes arbitrarily large; this critical 
value depends slightly on r and is about --.65 and -.75 for r = 1 and r = 1.4 
respectively. Since practical computation is generally carried out at large Re Ax, the 
choice y1 w y2 * --.6 2 (Y&it is nearly optimal in the sense that it provides the 
minimally oscillatory abrupt jump solution (28) despite the coarse computational 
mesh. It is noted that these choices of y1 and yz do not represent divergence form 
differencing. In particular the choice y1 = 0, which is certainly desirable for analytic 
simplicity, need not be computationally optimal at large mesh Reynolds numbers. 

It is now desirable to determine the errors in the difference solutions as such solu- 
tions depart from the abrupt-jump solution (28) when y1 and yz are not optimally 
chosen for computation at a given large RE dx. Difference equations (8) and (9) at 
j = J - I and j = J - 2 are used, along with boundary conditions (lOc, d) to obtain 
the values i-J-, , pJP2, U,-, , and pJ-3. A reference abrupt jump solution from 
U = p = 1 to U = U, , p = p., may be assumed to pass through the computed mesh 
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point values U,-, and pJw2 at j = J - 2. The values of iJ,_, and pJes will generally 
differ from the correct values CJ = p = 1 when y1 and yZ are arbitrarily chosen. The 
errorinUatj=J-3 

eJ-3 = 1 1 - UJ-3 1 (29) 

is a measure of the “error” in the computed difference solution, and is shown in 
Figure 7 for the specific values r = 1.4, fl = .305, UJ = .5; the results are similar for 
other values if the variation of (yr)crit is accounted for. The abscissa in Figure 7 is the 

r = 1.4 
n = ,305 

u, =.5 

(Y, I,,,,= -.75 

ASYMPTOTIC VALUE 
ReAx-co 

\ 
1.071 

‘0 I-U 15 20- 
ReAx = (-+I REAx 

FIG. 7. Error in difference solution for Y =; 1.4 and the non-optimal choice y1 = yr w (Y&,.~~. 

mesh Reynolds number Re dx based upon half of the computed jump magnitude, and 
each curve represents one specific choice of yl = yZ Z=Z (Y&it . It is noted that y1 = y2 
is not necessarily the combination (rf, yt) suggested by Figure 4. It is therefore 
surprising that the error eJ_, shows a conspicuous dip (i.e., the difference solution is 
very nearly (28)) for Re dx near the value of Re* dx corresponding to the chosen 
value of y1 2 (Yl)crrt. Furthermore, even if y1 < (yl)crit where no minimal point of 
the error curve may be expected and the negative value of Re* dx might be disturbing, 
the values of eJ-3 are still small. Generally speaking, then, the accuracy of the dif- 
ference solution depends somewhat more sensitively on y1 than on yZ , and the error 
values are well within practical accuracy requirements (5 IO-20 “/, of the jump) if 
y1 w (yr)crit. It is also important that the error curves are quite flat for Re Ax 2 10, 
since in practice the value of Re dx will vary over the field of computation so that a 
precise value of Re* Ax cannot be defined. 

The question of difference solution behavior during the process of mesh refinement 
for a fixed discretization method (choice of y1 and yZ) is now briefly discussed. 
Reference is made to Figure 2 for y1 = 0 and to Figure 7 for y1 =: yg e (Yr)crit. 

Refining the computational mesh means reducing Ax for a fixed RE (or Re), so that 
RE Ax (or Re Ax) is correspondingly reduced. As demonstrated in Figure 2, the 
difference solution is non-oscillatory at RE Ax = RI? Ax = co. As RE Ax is reduced, 
the solution becomes oscillatory at finite RE Ax > RE* Ax, is again nonoscillatory 
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at RE* dx, and then switches oscillatory behavior many times as the computed profile 
spreads out before smooth (nonoscillatory) solutions are again obtained as RE Ax 
approaches RE Ax. If RE Ax is reduced below RZ? Ax, an incorrect Hugoniot jump 
is obtained, despite the smooth computational results. It is thus wrong to pursue 
smooth solutions without regard to the error of the computed results. If the desired 
computational result is a nonoscillatory solution with minimal error at fairly large 
RE Ax, the abrupt-jump solution is clearly optimal, and it is quite possible that 
further mesh refinements will give worse approximations. Analogously, in Figure 7 
for yl = y2 m (y&it , moving to the left on a given curve is equivalent to mesh 
refinement, The mesh should not be refined to a value of RE Ax significantly below 
that corresponding to the minimum point of the error curve. 

6. TWO-DIMENSIONAL EXAMPLE 

A brief example is now given which shows the existence of an error minimum in a 
realistic two-dimensional computation with the full Navier-Stokes equations. These 
results were obtained by Neale Messina for an oblique shock with incident Mach 
number 2 and pressure ratio 1.910, and are thoroughly explained in [7]. The computa- 
tion employed the Cheng-Allen algorithm with discretization parameter y = 0 for 
all nonlinear terms to obtain a steady solution on a mesh of 28 Ay by 60 Ax 
(Ay = Ax). Figure 8 displays the L, and L, errors in velocity and density as functions 
of the mesh Reynolds number Re dx based on half of the computed velocity jump. 
The vertical bars represent the range of errors computed along Z Ay (I = 1,2,..., 28) 
and the cross shows the average over I. These results are in qualitative agreement with 
our simple one-dimensional model; a more complete exposition on multi-dimensional 
results is forthcoming [8]. 

7. CONCLUSIONS 

The present analytical study of steady-state difference approximations to gas- 
dynamic model system (1) leads to the following conclusions pertinent to practical 
computation: 

(i) The mesh Reynolds number Re Ax is a useful parameter reflecting computa- 
tional resolution and accuracy. For problems involving discontinuities, Re Ax should 
be based on the velocity jump across the discontinuity, and not on the upstream 
reference value or the local value. 

(ii) When downstream extrapolation conditions are used, a difference formula- 
tion which is conservative can yield good approximations to the physical problem 
(correctly computed Hugoniot jumps) in the practical range of large Re Ax ( >,O(lO)), 
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FIG. 8. L1 and L, errors for velocity and density in the Navier-Stokes solution of an oblique 
shock wave, as a function of mesh Reynolds number Redx. 
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despite computational oscillations. If the formulation is not conservative, little can be 
determined by the present method. 

(iii) The magnitude of computational oscillations and the pointwise error at 
such large Re dx can be significantly reduced by correctly choosing the discretization 
parameters y1 and yZ which select specific conservative discretizations of the nonlinear 
terms @u)~ and (pu2), in the continuity and momentum equations. In obtaining the 
optimal computational solution, the choices of these parameters are interdependent. 
The discretization of the continuity equation is especially crucial. The extension of this 
type of weighted average conservative differencing to other terms in similar equations 
is straightforward. 

(iv) The specific choice y1 = yZ M (Y)crit is recommended for problems similar 
to the present model. 

(v) For a given discretization (choice of rJ, it is possible to refine the com- 
putational mesh (decrease Re Lx) and obtain a more oscillatory solution. Further- 
more, the mesh should not be overly refined in attempting to approach the small mesh 
limit, since for Re dx 5 O(l), the difference solution obtained with downstream 
extrapolation, although smooth, will have large error due to an incorrectly computed 
Huguniot jump and excessive extension of the jump region. 

APPENDIX: DERIVATION OF ABRUPT JUMP SOLUTION (28) 

Solution (28) must satisfy the two difference equations (8), (9) at pointsj = k - 1, 
k, k + 1, or a total of six nonlinear relations. However, due to summability (difference 
form conservation), one of the continuity relations (8) and one of the momentum 
relations (9) are redundant. This is because “exact” solution (28) automatically 
satisfies the summed difference relation (17), so that if (say) solution (28) satisfies 
continuity and momentum at j = k - 1 and j = k, the two difference relations at 
j = k + 1 will be identically satisfied. Thus the exact solution (28) is obtained by 
solving for four of the five unknowns (U,C , pK , y1 = yz, yZ = y$, RE dx = RE* Ax) 
from four equations. Here the extra degree of freedom is used to select yr . 

Specifically, continuity equation (8) at j = k gives 

pk = uki’% 

and at j = k - 1 gives (using (A.l)) 

,yk2 + YWJ + 1) 
2 Uk - u.4 + y:> = 0 

(A.11 

64.2) 

Now the downstream value U, is given by Hugoniot relation (17) for any specified 
physical problem (i.e., given r, (1). Thus the “midpoint” values uk , pa , are completely 
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determined by the choice of yl. * The momentum equation (9) atj = k and j = k - 1 
then yield respectively 

+I&- 11 +-qgw- I)] 2 2 + r,* 
+A[& I] =j&jp-m+ 11 

g-&-I]+&[~;+G-2] 

+ A[($‘- q = & [Uk - 11 

(A.31 

(A.41 

which determine RE* Ax and yz uniquely. 
The above method of generating exact solutions of the difference system can be 

generalized straightforwardly to jumps over more mesh points. 
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